Volume: 1 Issue: 1
Year: 2025, Page: 1-11,
Received: May 16, 2025 Accepted: Sept. 20, 2025 Published: Sept. 28, 2025
Transition metal oxides with perovskite structures have attracted considerable attention owing to their wide-ranging electrical and magnetic properties, positioning them as promising materials for nextgeneration electronic and spintronic devices. Among these, manganite-based compounds exhibiting colossal magnetoresistance (CMR) have been extensively studied for their potential in magnetic sensors, data storage, and related technologies. In this context, the present study focuses on the structural, electrical, and magneto-transport properties of La3/5Sr2/5MnO3 perovskite, a composition well known for its pronounced CMR behavior. X-ray diffraction analysis confirms the formation of a singlephase perovskite structure with high crystallinity. Temperature-dependent resistivity (ρ–T) measurements were performed under magnetic fields of 0 T, 4 T, and 8 T. The material exhibits a distinct metal-insulator transition (TMI) at 230.56 K in the absence of a magnetic field. With the application of magnetic fields, the TMI shifts to higher temperatures, which is attributed to enhanced carrier delocalization mediated by the double exchange mechanism. A marked reduction in resistivity is observed at higher magnetic fields, resulting from suppressed spin disorder and diminished inelastic electron scattering. The conduction mechanism is further analyzed using small polaron hopping and variable range hopping models, suggesting a temperature-dependent transport regime. Isothermal magnetoresistance (MR%) measurements at 5 K over a 0–8 T range indicate significant negative MR, which is interpreted using the spin-polarized tunneling model, emphasizing the role of grain boundary effects in charge transport. The compound’s notable CMR response positions it as a promising material for future applications in magnetic sensors and spintronic technologies.
Keywords: Manganites and its characteristics, Electrical Resistivity, Phase transition, Magnetoresistivity
[1] C. Israel, M.J. Calderón, N.D. Mathur, The current spin on manganites The manganites are pseudo-cubic oxides of manganese that show, Mater. Today. 10 (2007) 24–32. https://doi.org/10.1016/S1369-7021(07)70242-0.
[2] Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites, 200 (1999) 1–23.
[3] J. Renard, CMR manganites : physics , thin films and, 127 (2003).
[4] Y. Tokura, Colossal Magnetoresistive Oxides _ Yoshinori Tokura _ Taylor & Francis, 1st Editio, CRC Press, London, 2000. https://doi.org/https://doi.org/10.1201/9781482287493.
[5] S.S.. Parkin, N. More, K.P. Roche, Oscillations in Exchange Coupling and Magnetoresistance in Metallic Superlattice Structures: Co/Ru, Co/Cr, and Fe/Cr, Phys. Rev. Lett. 64 (1990) 2304–2308. https://doi.org/DOI: https://doi.org/10.1103/PhysRevLett.64.2304.
[6] P.M. Levy, Giant Magnetoresistance in Magnetic Layered and Granular Materials*, Solid State Phys. 47 (1994) 367–472. https://doi.org/https://doi.org/10.1016/S0081-1947(08)60642-6.
[7] J.Q. Xiao, J. Samuel, Jiang, C.L. Chien, Giant Magnetoresistance in Nonmnltilayer Magnetic Systems, Phys. Rev. Lett. 68 (1992) 3749–3752.
[8] A.E. Berkowitz, J. Mitchell, R., M. Carey, J., A. Young, P., S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, G. Thomas, Giant Magnetoresistance in Heterogeneous Cu-Co Alloys, Phys. Rev. Lett. 68 (1992) 3745–3748.
[9] J.K.H.A. T. L. Hylton, K. R. Coffey, M. A. Parker, Giant Magnetoresistance at Low Fields in Discontinuous NiFe-Ag Multilayer Thin Films, Science (80-. ). 261 (1993) 1021–24.
[10] S. Athanasopoulos, S.W. Bailey, J. Ferrer, V.M. Garc, Giant magnetoresistance of nickel-contacted carbon nanotubes, J. Phys. Condens. Matter. 19 (2007) 042201. https://doi.org/10.1088/0953-8984/19/4/042201.
[11] I.H. KARAHAN, ¨O F BAKKALO˘GLU, M. BEDIR, Giant magnetoresistance of electrodeposited Cu – Co – Ni alloy films, Pramana. 68 (2007) 83–90.
[12] G.H.J. R, J.H.V. an Santen, FERROMAGNETIC COMPOUNDS OF MANGANESE WITH PEROVSKITE STRUCTURE, Physica. XVI (1950) 337--349.
[13] G.H. JONKER, Magnetic compounds with Perovskite Structure IV, Physica. XXII (1956) 707–722.
[14] G.C. Milward, M.J. Calderon, P.B. Littlewood, Electronically soft phases in manganites, Nature. 433 (2005) 607
[15] M.B. Salamon, M. Jaime, The physics of manganites : Structure and transport, Rev. Mod. Phys. 73 (2001) 583–628.
[16] C.W. SEARL, S.T. Wang, Studies of the ionic ferromagnet (LaPb)MnO,. V. Electric transport and ferromagnetic properties, Can. J. Phys. 28 (1970) 2023–31.
[17] C.W. Searl, S.T. Wang, Studies of the ionic ferromagnet (LaPb)MnO,. III. Ferromagnetic resonance studies, Can. J. Phys. 47 (1969) 2703–2708.
[18] C. Israel, M.J. Calderón, N.D. Mathur, The current spin on manganites, Mater. Today. 10 (2007) 24–32.
[19] A. M. GLAZER, Simple Ways of Determining Perovskite Structures, Acta Crystallogr. A31 (1975) 756–762.
[20] von V.M. Goldschmidt., Geochemische Verteilungsgesetze der Elemente in SearchWorks catalog, (n.d.) 8v.
[21] C.N.R. Rao, A.K. Raychaudhurit, COLOSSAL MAGNETORESISTANCE , CHARGE ORDERING AND OTHER NOVEL PROPERTIES OF MANGANATES AND RELATED MATERIALS, 1998. https://doi.org/https://www.worldscientific.com/doi/abs/10.1142/9789812816795_0001.
[22] E.O. Wollan, W.C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds L(1—x)La, xCa]MnO3, Phys. Rev. 100 (1955) 1955.
[23] L.K. Leung, A.H. Morrish, C.W. Searle, Studies of the ionic ferromagnet (LaPb)MnO,. II. Static magnetization properties from 0 to 800 0K, Can. J. Phys. 47 (1969) 2697.
[24] J.. Jirák, Z., Vratislav, S. and Zajiček, The Magnetic Structure of Pr0.9 Ca 0.1 MnO 3, 42 (1979) 411–417. https://doi.org/doi.org/10.1515/9783112496862-051.
[25] John B Goodenough, Theory of the Role of Covalence in the Perovskite-Type Manganites [La,M(II)]MnO3, Phys. Rev. 100 (1955) 564.
[26] J.M.D. Coey, M. Viret, S. Von Molnár, Mixed-valence manganites, Adv. Phys. 58 (2009) 571–697. https://doi.org/10.1080/00018730903363184.
[27] C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Comyountls of Manganese with Perovskite Structure, Phys. Rev. 82 (1950).
[28] A. V. Deshmukh, S.I. Patil, S.M. Bhagat, P.R. Sagdeo, R.J. Choudhary, D.M. Phase, Effect of iron doping on electrical, electronic and magnetic properties of La0.7Sr0.3MnO3, J. Phys. D. Appl. Phys. 42 (2009) 1–6. https://doi.org/10.1088/0022-3727/42/18/185410.
[29] B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, IEEE Press, A John Wiley and sons, INC., Publication, 2009.
[30] G. Channagoudra, A.K. Saw, V. Dayal, Low temperature spin polarized tunnelling magneto-resistance in La1-xCaxMnO3 (x=0.375 and 0.625) nanoparticles, Emergent Mater. 3 (2020) 45–49. https://doi.org/10.1007/s42247-019-00067-z.
[31] V. Dayal, S. Keshri, Structural and magnetic properties of La0.67Ca0.33Mn(1-x)FexO3 (x=0-0.07), Solid State Commun. 142 (2007). https://doi.org/10.1016/j.ssc.2007.01.022.
[32] C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure, Phys. Rev. 82 (1951) 403–405. https://doi.org/10.1103/PhysRev.82.403.
[33] P.W. Anderson, H. Hasegawa, Considerations on double exchange, Phys. Rev. 100 (1955) 675–681. https://doi.org/10.1103/PhysRev.100.675.
[34] P. Kameli, H. Salamati, A. Aezami, Influence of grain size on magnetic and transport properties of polycrystalline La0.8Sr0.2MnO3 manganites, J. Alloys Compd. 450 (2008) 7–11. https://doi.org/10.1016/j.jallcom.2006.10.078.
[35] N.D. Thorat, K.P. Shinde, S.H. Pawar, K.C. Barick, C.A. Betty, R.S. Ningthoujam, Polyvinyl alcohol: An efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application, Dalt. Trans. 41 (2012) 3060–3071. https://doi.org/10.1039/c2dt11835a.
[36] M.E. Botello-Zubiate, M.C. Grijalva-Castillo, D. Soto-Parra, R.J. Sáenz-Hernández, C.R. Santillán-Rodríguez, J.A. Matutes-Aquino, Preparation of La 0.7 Ca 0.3-x Sr x MnO 3 manganites by four synthesis methods and their influence on the magnetic properties and relative cooling power, Materials (Basel). 12 (2019). https://doi.org/10.3390/ma12020309.
[37] K. Navin, R. Kurchania, A comparative study of the structural, magnetic transport and electrochemical properties of La0.7Sr0.3MnO3 synthesized by different chemical routes, Appl. Phys. A Mater. Sci. Process. 126 (2020) 1–13. https://doi.org/10.1007/s00339-019-3269-2.
[38] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (1969) 65–71.
https://doi.org/10.1107/s0021889869006558.
[39] H.M. Rietveld, The Rietveld method, Phys. Scr. 89 (2014). https://doi.org/10.1088/0031-8949/89/9/098002.
[40] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Phys. Condens. Matter. 192 (1993) 55–69. https://doi.org/10.1016/0921-4526(93)90108-I.
[41] A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1938) 978.
[42] S.O. Manjunatha, A. Rao, T.Y. Lin, C.M. Chang, Y.K. Kuo, Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35-xBaxMnO3(0 ≤ x ≤ 0.25) manganites, J. Alloys Compd. 619 (2015) 303–310.ttps://doi.org/10.1016/j.jallcom.2014.09.042.
[43] S.P. Rao, A.K. Saw, C. Chotia, G. Okram, V. Dayal, Structural and thermoelectric properties of Mn15Si26, Mn4Si7 and MnSi2, synthesized using arc-melting method, Appl. Phys. A Mater. Sci. Process. 127 (2021) 1–6. https://doi.org/10.1007/s00339-021-04754-9.
[44] C.J. Benedict, A. Rao, G. Sanjeev, G.S. Okram, P.D. Babu, A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3, J. Magn. Magn. Mater. 397 (2016) 145–151. https://doi.org/10.1016/j.jmmm.2015.08.111.
[45] A.K. Saw, G. Channagoudra, S. Hunagund, F. Hao, R.L. Hadimani, V. Dayal, Study of magnetotransport and low temperature anomaly in half doped lanthanum calcium manganite nanoparticle, (2019) 030437. https://doi.org/10.1063/1.5113276.
[46] S. Keshri, V. Dayal, Structural and electrical transport properties of nanosized La0.67Ca0.33MnO3 sample synthesized by a simple low-cost novel route synthesized by a simple low-cost novel route, 70 (2008) 697–704.
[47] G. Channagoudra, S. Gupta, V. Dayal, Study of structural, transport and magneto-crystalline anisotropy in La<inf>1-x</inf>Sr<inf>x</inf>MnO<inf>3</inf>(0.30 ≤ x ≤ 0.40) perovskite manganites, AIP Adv. 11 (2021). https://doi.org/10.1063/9.0000119.
[48] G. Channagoudra, S. Gupta, V. Dayal, Study of structural, transport and magneto-crystalline anisotropy in La1−xSrxMnO3 (0.30 ≤ x ≤ 0.40) perovskite manganites, AIP Adv. 11 (2021) 1–6. https://doi.org/10.1063/9.0000119.
[49] S. Keshri, V. Dayal, L. Joshi, Influence of Fe doping on electrical properties of LCMO, Phase Transitions. 81 (2008). https://doi.org/10.1080/01411590701448772.
[50] R.K. Pathria, P.D. Beale, Phase transitions_ criticality, universality, and scaling, in: Stat. Mech. (Fourth Ed., Academic Press (ScienceDirect ), 2022: pp. 417–486. https://doi.org/https://doi.org/10.1016/C2017-0-01713-5.
[51] P.A.P. V.S. Zakhvalinskii, R. Laiho, A.V. Lashkul, K.G. Lisunov , E.L¨ahderanta, Yu.S. Nekrasova, Phase separation , ferromagnetism and magnetic irreversibility La1-xSrxMn1-yFeyO3, J. Magn. Magn. Mater. 323 (2011) 2186–2191. https://doi.org/10.1016/j.jmmm.2011.03.028.
[52] H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Lattice Effects on the Magnetoresistance in Doped LaMn03, Phys. Rev. Lett. 75 (1995) 3–6.
© Published by INDEAMIND. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Vijaylakshmi Dayal. Colossal Magnetoresistance in Manganites: An Overview and Field-Dependent Transport Study of La3/5Sr2/5MnO3 Perovskite. Ind J Eng Mgt Sci. 2025;1(1):1-11